87 research outputs found

    Applying geomorphological principles and engineering science to develop a phased sediment management plan for Mount St Helens, Washington

    Get PDF
    Thirty-seven years post-eruption, erosion of the debris avalanche at Mount St. Helens continues to supply sediment to the Toutle-Cowlitz River system in quantities that have the potential to lower the Level of Protection (LoP) against flooding unacceptably, making this one of the most protracted gravel-bed river disasters to date. The Portland District, US Army Corps of Engineers (USACE) recently revised its long-term plan for sediment management (originally published in 1985), in order to maintain the LoP above the Congressionally-authorised level, while reducing impacts on fish currently listed under the Endangered Species Act, and minimising the overall cost of managing sediment derived from erosion at Mount St Helens. In revising the plan, the USACE drew on evidence gained from sediment monitoring, modelling and uncertainty analysis, coupled with assessment of future LoP trends under a baseline scenario (continuation of the 1985 sediment management strategy) and feasible alternatives. They applied geomorphological principles and used engineering science to develop a Phased Sediment Management Plan that allows for uncertainty concerning future sediment yields by implementing sediment management actions only as, and when, necessary. The phased plan makes best use of the potential to enhance the sediment trap efficiency and storage capacity of the existing Sediment Retention Structure (SRS) by incrementally raising its spillway and using novel hydraulic structures to build islands in the NFTR and steepen the gradient of the sediment plain upstream of the structure. Dredging is held in reserve, to be performed only when necessary to react to unexpectedly high sedimentation events or when the utility of other measures has been expended. The engineering-geomorphic principles and many of the measures in the Phased Sediment Management Plan are transferrable to other gravel-bed river disasters. The overriding message is that monitoring and adaptive management are crucial components of long-term sediment-disaster management, especially in volcanic landscapes where future sediment yields are characterised by uncertainty and natural variability

    Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin

    Full text link
    The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123±18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis. Copyright © 2012 John Wiley & Sons, LtdWe express our gratitude to the Spanish Ministry of Science and Innovation for financial support. This work was funded by the MAS Dendro-Avenidas project (CGL2010-19274) and the Geological Survey of Spain (IGME). We are grateful to the Tagus Water Authority, Environment Department of Castilla y Leon in avila, Caja avila, Asocio de avila and Navaluenga Council for their collaboration. Our special thanks to forester Jose Luis Galan for his assistance in the field. We would also like to mention Juan Ballesteros, Ignacio Gutierrez, Tasio Fernandez, Leticia Salas, Carolina Guardiola and angel Prieto for contributing suggestions and interesting discussions that significantly improved this paper. Thanks to the contribution of two anonymous reviewers, which improved the quality of the early version of this manuscript.Ruiz-Villanueva, V.; Bodoque, J.; Díez-Herrero, A.; Eguíbar Galán, MÁ.; Pardo-Igúzquiza, E. (2012). Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes. (9433):1-14. https://doi.org/10.1002/hyp.9433S114943

    Flood realities, perceptions, and the depth of divisions on climate

    Get PDF
    Research has led to broad agreement among scientists that anthropogenic climate change is happening now and likely to worsen. In contrast to scientific agreement, US public views remain deeply divided, largely along ideological lines. Science communication has been neutralised in some arenas by intense counter-messaging, but as adverse climate impacts become manifest they might intervene more persuasively in local perceptions. We look for evidence of this occurring with regard to realities and perceptions of flooding in the northeastern US state of New Hampshire. Although precipitation and flood damage have increased, with ample news coverage, most residents do not see a trend. Nor do perceptions about past and future local flooding correlate with regional impacts or vulnerability. Instead, such perceptions follow ideological patterns resembling those of global climate change. That information about the physical world can be substantially filtered by ideology is a common finding from sociological environment/society research

    DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design

    Get PDF
    Water managers are actively incorporating climate change information into their long- and short-term planning processes. This is generally seen as a step in the right direction because it supplements traditional methods, providing new insights that can help in planning for a non-stationary climate. However, the continuous evolution of climate change information can make it challenging to use available information appropriately. Advice on how to use the information is not always straightforward and typically requires extended dialogue between information producers and users, which is not always feasible. To help navigate better the ever-changing climate science landscape, this review is organized as a set of nine guidelines for water managers and planners that highlight better practices for incorporating climate change information into water resource planning and management. Each DOs and DON'Ts recommendation is given with context on why certain strategies are preferable and addresses frequently asked questions by exploring past studies and documents that provide guidance, including real-world examples mainly, though not exclusively, from the United States. This paper is intended to provide a foundation that can expand through continued dialogue within and between the climate science and application communities worldwide, a two-way information sharing that can increase the actionable nature of the information produced and promote greater utility and appropriate use
    corecore